
Front Cover: Cyclic sedimentation in Lackatong Formation, Eureka Quarry (photo: Paul Olsen)

The Mesozoic Newark Basin stretches across southeastern Pennsylvania from the Delaware River to the northeastern tip of Lancaster County. This conference will focus on the basin in upper and central Bucks County where the sedimentary, igneous, metamorphic and tectonic history are well exposed in the local quarries. Topics to be discussed include the geometry and evolution of the basin, the distinct cyclic sedimentation related to climate history, and their relevance to environmental geology, groundwater and arsenic, and carbon sequestration. Additional stops will look at diabase related to Central Atlantic Magmatic Province (CAMP) and its associated contact metamorphism.

Oddly, the Newark basin has never been the focus of a field conference and it is hoped that this trip will spur additional interest, studies and mapping in one of the more rapidly growing parts of the state.

A variety of preconference trips are also planned. Excursions include a tour of the nearby 19th century Ueberroth & Hartman Zn mines, a caving trip, a look at the Quakertown diabase sill, a geo-biking tour of the Saucon Rail Trail, and a groundwater remediation study in fractured bedrock at a former military base.

Compiled by: Robin V. Anthony, Pennsylvania Geological Survey, FCOPG editor
TEMPORAL, TECTONIC, CLIMATIC AND ENVIRONMENTAL CONTEXT OF THE TRIASSIC-JURASSIC RIFT SYSTEM OF EASTERN NORTH AMERICA: EMERGING CONCEPTS FROM THE NEWARK RIFT BASIN

Center Valley, PA
October 5-6, 2018

Paul E. Olsen, Lamont-Doherty Earth Observatory of Columbia University
Martha Withjack & Roy W. Schlische, Rutgers University
Frank Pazzaglia, Lehigh University

Cyclical lacustrine strata of Lockatong Formation at Eureka Quarry (Stop 2). Photo by P.E. Olsen.
Overview of Rifting and Breakup in Eastern North America

Eastern North America (Figs. I.1, I.2) is a natural laboratory for studying rift basins and passive-margin development. It hosts one of the world’s largest rift systems (the eastern North American rift system), one of the world’s oldest intact passive margins, and one of the world’s largest igneous provinces (the Central Atlantic Magmatic Province, CAMP). Additionally, seismic-reflection profiles, field exposures, drill-hole data, and vitrinite-reflection data provide a wealth of information about the tectonic and depositional processes associated with rifting, breakup, and the early stages of seafloor spreading.

During early Mesozoic time, a massive rift zone developed within the Pangean supercontinent (inset, Fig. I.2). The breakup of Pangea splintered this rift zone into extinct fragments, each now separated and preserved on the passive margins of eastern North America, northwestern Africa, and Europe. The fragment on the North American margin, called the eastern North American (ENAM) rift system, consists of a series of exposed and buried rift basins extending from northern Florida to the eastern Grand Banks of Canada (e.g., Manspeizer and Cousminer, 1988; Olsen et al., 1989; Schlische, 1993, 2003; Withjack et al., 1998) (Fig. I.2). It is a large rift system with multiple parallel and interconnected rift basins that affects a region up to 500 km wide and 3000 km long. Withjack and Schlische (2005) and Withjack et al. (2013) divided the ENAM rift system into three segments based on tectonic history (Fig. I-2). Rifting was underway in all three segments by Late Triassic time and may have begun as early as the Late Permian. The end of rifting (and presumably the beginning of seafloor spreading), however, was diachronous, occurring first in the southeastern United States (latest Triassic), then in the northeastern United States and southeastern Canada (Early Jurassic), and finally in the Grand Banks (Early Cretaceous) (Withjack et al., 1998, 2013; Withjack and Schlische, 2005; Schettino and Turco, 2009).
Figure I.2: Tectonic elements of the eastern North American margin. The southern, central, and northern segments have progressively younger ages for the end of rifting and presumably the onset of seafloor spreading. The East Coast Magnetic Anomaly approximates the location of seaward-dipping reflectors near the continent-ocean boundary. The Blake Spur Magnetic Anomaly may be related to a ridge jump. Inset shows configuration of the supercontinent Pangea during the Late Triassic (Olsen, 1997), and highlights the rift zone between eastern North America and NW Africa and Iberia. Regional transect through southern segment of margin shows Triassic-Jurassic rift basins, seaward dipping reflectors (SDRs) at site of breakup, and Mesozoic/Cenozoic post-rift basins. Modified from Withjack & Schlische (2005).
Figure I.3a: Detailed geologic map of Newark basin. NBCP=Newark Basin Coring Project. Modified from Withjack et al. (2013) and Schlische (1992).

Figure I.3b: Interpretation of seismic line NB-1 located in area of field trip. Interpretation supplemented with drill-hole data from industry well (Cabot #1; for location, see Fig. I.3) and surface field data. Modified from Withjack et al. (2013).
Structure and Tectonic Evolution of Newark Basin

A series of NE-striking, SE-dipping, right-stepping faults bound the Newark basin on the northwest (Fig. I.3a). The bounding faults are subparallel to thrust faults present in pre-rift rocks surrounding the basin. Several large intrabasin faults also dissect the basin. Most syn-rift strata dip 10 - 15° NW toward the border-fault zone. Near many of the border and intrabasin faults, however, the syn-rift strata are warped into a series of anticlines and synclines whose axes are at a high angle to the adjacent faults (e.g., Wheeler 1939; Schlische 1992, 1995; Fig. I.4). The Newark basin, like many other rift basins of the eastern North American rift system, underwent significant post-rift deformation including much of the tilting and folding of the syn-rift strata (e.g., Sanders, 1963; Faill, 1973, 1988, 2003, 2005; Withjack et al., 1998; Schlische et al., 2003; Withjack et al., 2010).

Seismic line NB-1, located near the route of this field trip, images the subsurface geometry of the Newark basin. The seismic line shows that a major SE-dipping fault zone with normal separation bounds the basin on the northwest (Fig. I.3b). The fault zone, characterized by a series of high-amplitude reflections, is relatively planar and has a dip magnitude of ~ 30°. Using core data, Ratcliffe et al. (1986) demonstrated that this fault zone is a mylonitic Paleozoic thrust fault reactivated during rifting; this is consistent with the relatively low-angle dip of the border fault. The seismic data show that the syn-rift strata dip ~10 - 15° toward the northwest. Furthermore, the Stockton Formation (exposed at the surface) and an unexposed older unit (which appears to onlap Paleozoic pre-rift strata) thicken toward the border-fault zone, indicating that faulting and deposition were coeval (i.e., these units are growth deposits). Field and core data indicate that the Lockatong and Passaic formations also exhibit subtle thickening toward the border-fault zone. Furthermore, all sedimentary formations contain conglomeratic facies where present adjacent to the border-fault zone (see material for Stops 9 & 10).

Figure I.4: Geologic map of the southwestern Newark basin emphasizing the folds. A series of NW-plunging folds are present in the hanging wall of the border-fault system and the NE-striking intrabasinal faults. Modified from Withjack et al. (2013) based on Schlische (1992, 1995).
Figure I.5: Estimates of eroded material based on vitrinite-reflectance data. Red lines are contour lines showing estimated amount of eroded syn-rift strata (km). N is the location of the Nursery core, used to calculate the reflectance/depth trend for all erosion estimates. In the area of the field trip, the amount of missing section is 5-6 km. From Withjack et al. (2013) and Malinconico (2010).

Figure I.6: Restoration of cross section based on NB-1 to end of rifting. Restoration involves restoring eroded syn-rift section and removing post-depositional tilting, folding, and intrabasinal faulting. In the area of the field trip, the amount of missing section is about 5-6 km. From Withjack et al. (2013).
Erosion Estimates and Restoration of Basin Geometry

Vitrinite-reflectance data from core and outcrops (Fig. I.5) indicate that the Newark basin underwent up to 6 km of post-rift erosion. Most erosion occurred in the southern and eastern parts of the basin. Recent analyses of sonic transit times from cores and wells support these estimates and provide additional constraints in the northern part of the Newark basin (Durcanin et al., 2017; Withjack et al., in prep.). The estimates of the amount of eroded section provide a critical constraint on restorations of basin geometry that restore the eroded section and remove the effects of post-depositional tilting, faulting, and folding (Fig. I.6).

As the Newark rift basin developed from Late Triassic to Early Jurassic time, its geometry changed substantially (Fig. I.7; Withjack et al., 2013). Initially, the basin was narrow (< 25 km) and asymmetric, bounded on one side by a border-fault zone. The older syn-rift strata show significant thickening toward the fault zone. As rifting progressed, the basin, although still fault-bounded, became much wider (possibly > 100 km), deeper (up to 10 km), and less asymmetric; syn-rift strata exhibit subtle thickening toward the border-fault zone. Subsequent late rift and post-rift deformation and erosion (up to 6 km) significantly reduced the size of the Newark basin.

Figure I.7: Sequential restoration of the Newark basin from the end of syn-rift deposition to the onset of syn-rift deposition. The width of the basin varied from about 25 km at the start of deposition of the Stockton Formation to >100 km at the end of rifting. The present-day maximum width of the basin is ~50 km. Modified from Withjack et al. (2013).
Figure I.8: Stratigraphy of the Newark basin. The lithologic column is a composite section based on seven Newark Basin Coring Project cores (see Fig. I.3a for locations) and cores from the Army Corps of Engineers (ACE). For the core-based magnetic-polarity stratigraphy, black represents normal polarity.

Based on global correlations, the Triassic-Jurassic boundary is currently placed in the middle Feltville Formation. Previously, it was placed just below the Orange Mountain Basalt, coincident with the level of the end-Triassic mass extinction (see Olsen et al., 2011 for a full discussion). The geologic ages are based on radiometric dates of the lava flows coupled with Milankovitch cyclo-stratigraphy. Depositional environments are those at the cored locations, and apply to the parts of the basins away from the border-fault margin and the axial ends.

Modified from Kent et al. (2017).
Figure I.9: Hierarchy of Milankovitch-period lake-level cycles in the Passaic Formation. Depth rank uses color (red is shallow-water to subaerial; black is deep, anoxic water) and sediment fabrics (left) to estimate relative water depth. The basic cycle (Van Houten cycle) has a period of ~20,000 years. The two compound cycles illustrated here have periods of ~100,000 years and ~400,000 years. Orbital changes (precession and eccentricity) affected the amount of sunlight reaching a given point on Earth’s surface, which affected rates of precipitation and evaporation, which in turn affected lake levels. Modified from Olsen et al. (1996a) and Olsen and Kent (1996).

Stratigraphy and Cyclicity

The stratigraphy of the Newark rift basin (Fig. I.8) consists of the Stockton, Lockatong, and Passaic formations of Late Triassic age and the overlying basalts and interbedded sedimentary rocks of latest Triassic to Early Jurassic age (i.e., the Orange Mountain Basalt, Feltville Formation, Preakness Basalt, Towaco Formation, Hook Mountain Basalt, and Boonton Formation) (e.g., Olsen et al. 1996a). Most syn-rift strata accumulated in a lacustrine setting and exhibit a pervasive cyclicity (Fig. I.9) in sediment fabrics, color, and total organic carbon (from microlaminated black shale to extensively mudcracked and bioturbated red mudstone) (e.g., Olsen, 1986, Olsen et al., 1996a). Individual members of the stratigraphic units have great lateral extent and continuity and have been traced throughout much of the Newark basin (e.g., McLaughlin, 1948; Olsen, 1988); a prominent example is the Perkasie Member of the Passaic Formation (Fig. I.3a) (Stops 6, 8-9). Biostratigraphy indicates that the preserved syn-rift strata in the Newark basin range in age from Carnian (Late Triassic) to Hettangian (Early Jurassic) (e.g., Cornet and Olsen, 1985; Olsen et al., 2011).
The tropical lacustrine cyclicity originated from fluctuations in monsoon intensity (Olsen and Kent, 1996) as it still does today. The monsoon varied in response to changes in sunlight modulating the intertropical convergence zone. The changes in sunlight intensity were (and are) caused by variations in the orientation of the Earth’s spin axis driven largely by the sun and moon (precession) modulated by deformations in the figure of the Earth’s orbit in response to the joint action of the planets and other Solar System bodies. This system is chaotic on timescales of hundreds of millions of years (Laskar, 2003) and detailed prediction or postdiction is quite impossible past 50 million years. The geological record, as in the case of the Newark Basin, has preserved a history of what the gravitational system actually did, and it is possible to recover a highly resolved record that passes stringent internal tests allowing calibration of Solar System behavior, thus escaping the confines of Chaos (Kent et al., 2018; Olsen et al., 2018b).
Figure I.11: Stratigraphy and duration of the extrusive interval in the Newark basin based on ACE (Army Corps of Engineers) cores and the NBCP (Newark Basin Coring Project) Martinsville core. Basalt-flow units may be massive, pillowed, or columnar jointed. The flows have somewhat different geochemistry, although all flows are quartz-normative basalts. Intrusive rocks have the same geochemistry. HTQ = high-titanium quartz-normative basalt; HFQ = high-iron quartz-normative basalt; LTQ = low-titanium quartz-normative basalt; HFTQ = high-iron & titanium quartz-normative basalt. Interbedded sedimentary units are highly cyclical. These cycles indicate that the duration of the extrusive interval is ~600,000 years. Recent high-precision U-Pb isotope geochronology indicate that the oldest flow is dated at ~201.5 Ma and the youngest flow is dated at ~200.9 Ma (e.g., Blackburn et al., 2013). Modified from Whiteside et al. (2007) and Olsen et al. (1996b); also see Olsen et al. (2003).
Figure I.12: Stratigraphic and temporal framework for the Newark-Hartford timescale. Polarity chron with prefix E based on the Newark basin section and H for the Hartford basin section. Earlier but no longer valid correlations to standard geologic age boundaries stricken through (NR for Norian/Rhaetian and CN for Carnian/Norian). This time scale is now validated by U-Pb ages from the CAMP sequence (Blackburn et al. 2013) and from the Chinle Formation of the Cororado Plateau (Kent et al., 2018; Olsen et al., 2018b).

Igneous Activity

ENAM rifting was generally amagmatic with one significant exception: the development of the Central Atlantic Magmatic Province (CAMP), one of the world’s largest igneous provinces (e.g., McHone, 1996, 2000; Marzolli et al., 1999; Hames et al., 2003) (Figs. I.10 & I.11). CAMP-related igneous activity occurred during the very latest Triassic and earliest Jurassic (~201 Ma; see Blackburn et al., 2013, and references therein) (Figs. I.10 & I.11). This short-lived (Fig. I.11), but
intense, magmatic event led to the eruption of widespread basaltic lava flows and the intrusion of massive diabase sheets and dikes throughout the Newark rift basin.

Igneous activity also occurred during breakup. The ENAM margin, from Florida to southern Nova Scotia, is magma-rich, characterized by a wedge of seaward-dipping reflectors (SDRs) near the continent-ocean boundary (Fig. I.2). The SDRs, presumably of volcanic or volcaniclastic origin, formed during the rift-drift transition and are associated with the East Coast Magnetic Anomaly (ECMA) (e.g., Hinz, 1981; Benson and Doyle, 1988; Austin et al., 1990) (Fig. I.2). The remainder of the margin, from northern Nova Scotia to the Grand Banks, lacks SDRs and is, thus, considered magma-poor.

Timescale for the Triassic and Early Jurassic

The Newark basin and Hartford basin lacustrine record are the basis of a highly resolved and well tested timescale for the Late Triassic and earliest Jurassic. Largely based on the Newark Basin Coring Project, ACE cores, and new Hartford basin cores and outcrops, the timescale is based on the astrochronology of the lake cycles. Originally, this timescale was floating (Kent et al., 1995; Olsen and Kent, 1996; Kent and Olsen, 1999), that is, it was not well pinned in “absolute” time in terms of years. In a two-step process, the lava flows and associated intrusions of the CAMP provide a strong set of high-resolution zircon U-Pb tie points (Blackburn et al., 2013), and the pre-CAMP strata have most recently been calibrated by zircon U-Pb dates and magnetostratigraphy from the cores from the Triassic Chinle Formation recovered by the Colorado Plateau Coring Project (Kent et al., 2017; Olsen et al. 2018a; 2018b). These results unambiguously agree with the astrochronology supporting both the timescale and the empirical calibration of Solar System Chaos. This is the timescale we will use in this guidebook.
Field Stop Locations

Figure I.13: Shaded-relief map (with and without geology) of Newark basin and surrounding regions, showing physiographic provinces and locations of field sites, lunch spot, and conference hotel. Abbreviations on top map are: dr, Delaware River; dw, Delaware Water Gap; m, glacial moraine on Long Island; p, Palisades sill; r, fault-line scarp associated with Ramapo border fault. Shaded-relief map generated using GeoMapAPP. Geologic map compiled by P.E. Olsen based on Schlische (1992) and Lyttle & Epstein (1997).
Field Stop Locations for Day 1

Figure I.14: Bottom: Google terrain map showing geography of Day 1 field sites along with lunch stop (Peace Valley Park) and conference hotel (Homewood Suites by Hilton Allentown). The blue line is a driving route for passenger cars; the buses will take a somewhat different route because of weight restrictions on some bridges. Left diagram shows field sites on geologic / shaded-relief map.
Field Stop Locations for Day 2

Figure I.15: Below: Google terrain map showing geography of Day 2 field sites along with lunch stop (Peace Valley Park) and conference hotel (Homewood Suites by Hilton Allentown). The blue line is a driving route for passenger cars; the buses will take a somewhat different route because of weight restrictions on some bridges. Left diagram shows field sites on geologic / shaded-relief map.
References

<table>
<thead>
<tr>
<th>START</th>
<th>TURN</th>
<th>DIRECTIONS/COMMENTS/NOTES</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0</td>
<td></td>
<td>Homewood Suites Hotel is located at 3350 Center Valley Parkway</td>
</tr>
<tr>
<td>0.1</td>
<td>R</td>
<td>Turn right onto Center Valley Parkway, PA 2044</td>
</tr>
<tr>
<td>2.6</td>
<td>R</td>
<td>Turn right onto Saucon Valley Road</td>
</tr>
<tr>
<td>4.3</td>
<td>R</td>
<td>Veer right onto Bingen Road</td>
</tr>
<tr>
<td>4.4</td>
<td>L</td>
<td>Turn left at "T" onto Apples Church Road</td>
</tr>
<tr>
<td>4.9</td>
<td>R</td>
<td>Turn Right at "T" onto Leithsville Road/PA 412 South</td>
</tr>
<tr>
<td>6.4</td>
<td></td>
<td>Cross Bucks County Line Marker</td>
</tr>
<tr>
<td>6.9</td>
<td>L</td>
<td>Veer left at "Y" onto Hellertown Road/PA 212 East/PA 412 South</td>
</tr>
</tbody>
</table>
| 7.1 | | Historical Marker - Walking Purchase
Marker Text: Measured 1737, according to a supposed Indian deed of 1686, granting lands extending a day-and-a-half walk. Using picked men to force this measure to its limit, Thomas Penn reversed his father's Indian policy losing Indian friendship.
| 7.5 | L | Turn left at "T" to stay on Springtown Road/PA 212 East/PA 412 South |
| 9.3 | | Continue straight to stay on Main Street, Durham Road/PA 212 East |
| 12.0 | | Historical Marker - Durham Furnace
Marker Text: Built 1727. Original site at Durham. In blast until 1789, it made cannon and shot in the colonial wars and Revolution. One-time owners included James Logan and George Taylor.
| 13.8 | R | Turn right onto Easton Road/PA 611 South, possible construction zone |
| 13.8 | | Historical Marker - Delaware Canal (to north of intersection)
Marker Text: Here is Lock No.21 in a series of 23 lift locks, numbered from Bristol to Easton. The aqueduct over Cooks Creek is one of nine which carried water and shipping across branches of the Delaware River.
| 14.0 | | Outcrops of Grenville age basement gneiss -Reading Prong
Alleghanian thrust of basement over lower Paleozoic carbonates.
| 14.3 | | Monroe Border Fault
Boundary fault between Triassic fanglomerate and red beds and Cambrian Leithsville Formation. A National Natural Landmark.
<table>
<thead>
<tr>
<th>START</th>
<th>TURN</th>
<th>DIRECTIONS/COMMENTS/NOTES</th>
</tr>
</thead>
<tbody>
<tr>
<td>14.8</td>
<td></td>
<td>Triassic Passaic/Brunswick Formation, Delaware Canal on left</td>
</tr>
<tr>
<td>15.6</td>
<td>L</td>
<td>Turn left onto River Road/PA 32 South</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Nockamixon Cliffs ahead.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>300’ cliffs of Passaic (Brunswick) Formation hornfelsed by Coffman Hill diabase intrusion. Top Rock provides panoramic views of the Delaware River valley. Cliffs offer habitat for unique arctic-alpine plant community, a wide variety of birds, and ice climbing in winter.</td>
</tr>
<tr>
<td>18.1</td>
<td></td>
<td>Move through one lane bridge over Falls Creek</td>
</tr>
<tr>
<td>18.3</td>
<td></td>
<td>Ringing Rocks</td>
</tr>
</tbody>
</table>
| 19.4 | | Milford Bluffs across river
Passaic Formation siltstone and shale
https://nj.gov/dep/njnlt/tfbreden.htm |
| 20.1 | L | Turn left crossing bridge over Delaware River and enter Milford, NJ |
ROADLOG: Day 1 – Friday, October 5, 2018

<table>
<thead>
<tr>
<th>START</th>
<th>TURN</th>
<th>DIRECTIONS/COMMENTS/NOTES</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Crossing Upper Black Eddy - Milford Bridge</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Recent tectonic movement along state boundary fault.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>From PAGeode - ESRI Topographic base map.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Hold on tight.</td>
</tr>
<tr>
<td>20.4</td>
<td>R</td>
<td>Turn right at "T" onto Frenchtown Road, Harrison Street/NJ 619</td>
</tr>
<tr>
<td>22.5</td>
<td></td>
<td>Roadside excavation</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Passaic Formation siltstone and shale. Well-bedded with mudcracks. Common trails, tracks and burrows most likely from small crustaceans.</td>
</tr>
<tr>
<td>START</td>
<td>TURN</td>
<td>DIRECTIONS/COMMENTS/NOTES</td>
</tr>
<tr>
<td>-------</td>
<td>------</td>
<td>---------------------------</td>
</tr>
<tr>
<td>23.2</td>
<td>L</td>
<td>Turn left onto 12th Street following sign for Truck Route/NJ 29</td>
</tr>
<tr>
<td>23.9</td>
<td></td>
<td>Route becomes Race Street, River Drive, Daniel Bray Highway, Risler Street</td>
</tr>
<tr>
<td>24.0</td>
<td>L</td>
<td>Turn left onto Trenton Avenue/NJ 29 South, tight roadway section</td>
</tr>
</tbody>
</table>
| 24.5 | | Historical Marker - Lower Argillite Alley
| | | Marker Text: Lenape tribes used this abundant Hunterdon mineral for spearpoints and tools. One of their trade routes followed the River Road (now Rte. 29) southwards towards Sanhican (Trenton). |
| 28.3 - 28.9 | | Passaic Formation
| | | Lower part of Passaic Formation reddish brown siltstones and mudstones. Gray mudstone unit near southern end. |
| 29.0 | | Contact of Passaic and underlying Lockatong about 600 feet south of Warsaw Road |
| 29.6 | | Lockatong Formation
| | | Continuing downsection through basin. Predominantly gray sometimes dolomitic mudstones and siltstones. Some red beds. |
| 30.3 | | Tumble Falls
| | | Group of waterfalls on flashy streams |
| | | http://waterfalls.nature.st/NewJersey/Hunterdon.html |
| 31.0 - 31.4 | | Abandoned quarry in Lockatong hornfels. Byram diabase sill at south end of outcrop. |
| 32.3 | | Approximate location of contact between Lockatong and underlying Stockton Formation |
| 32.7 | | Stockton Formation
| | | Bedded reddish-brown sandy mudstone and sandstone in uppermost Stockton Formation. |
| 35.7 | R | **Turn right into Prallsville Mills, 33 Risler Street, Stockton, Stop #1**
| | | Just past “Entering Borough of Stockton” sign |
| | | Doughnut & Coffee Break |
Stop 1: Stockton Formation at Prallsville Mills

Figure: 1.1: Cross section of the Newark basin along seismic line NB-1 showing the projected position of Stop 1. Modified from Withjack et al. (2013).

Location: Lat 40.409698, Long -74.987433: Prallsville Mills, 33 Risler St., Stockton, NJ 08559.

Key Points:

1. Exposures of Stockton Formation, basal synrift unit of Newark basin (~230 to 227 Ma in age)
2. Deeply buried (> 6 km) by end of rifting; now exhumed by uplift, tilting, and faulting
3. Deposited in meandering-stream environment near equator
4. Consists of interbedded sandstones, siltstones, clays with heavily bioturbated and soil fabrics
5. Long-term aquifer, plausibly charged with reducing fluids (hydrocarbons?) during deep burial
6. Orthogonal joints enhance ground-water fluid flow

Notes:
An abandoned stone quarry at Prallsville Mills exposes a section of the Prallsville Member of the Stockton Formation (Fig. 1.1). Observations from a very similar section, present in the Skeuse Quarry (Olsen et al., 1989) (Fig. 1.2) which is no longer accessible, apply to Stop 1. The Stockton Formation is the basal syn-rift unit of the Newark basin. This section was once buried by more than 6 km of syn-rift section. Subsequent, regional uplift, NW tilting, and faulting produced significant erosion, exposing the Stockton Formation at this locality.

The Prallsville Member of the Stockton Formation consists of cycles of pale arkosic sandstone and conglomerate grading upward into red mudstone and red to purple sandstone with abundant burrows and root traces. Burrows are also present in the pale sandstones, but more difficult to see. No other fossils are known from the Prallsville Member of the Stockton Formation. The sedimentary structures in the fining-upward sequences are consistent with large, perennial meandering river deposits. In addition, lateral fining of cross-bedded units suggests the presence of lateral accretion surfaces on point bars. The implied large river systems indicate that the basin was hydrologically open.

Based on paleomagnetic data, the strata at this locality accumulated very near the equator (Kent and Tauxe, 2005). The heavy bioturbation suggests persistent humidity consistent with its near equatorial position. However, some soil carbonates are present and yield pCO_2 estimates of ~5000 ppm (Schaller et al., 2015), suggesting very high evaporation rates, under climatic conditions with no modern analog.

According to Van Houten (1969), the Stockton sandstones exhibit interlocking grains resulting from pressure solution during their deep burial. The yellow patches in outcrop are intergranular zones of limonite replacing what was iron-rich carbonate. Abundant grains of specular hematite, supposedly replacing magnetite, are also present.

There are no age-diagnostic data from this part of the basin section; however, it is below the Raven Rock Member of early Norian age. This part of the Stockton correlates to middle Carnian marine strata based on magnetostratigraphy (Muttoni et al. 2004); therefore, it is between 230 and 227 Ma in age. This means it is slightly younger than the still poorly constrained “Carnian Pluvial event” (Furin et al., 2006), which, if it exists, has been interpreted as due to a humid climatic
interlude somehow related to CO$_2$ from the eruption of the Wrangellian oceanic plateau basalts (Dal Corso et al., 2015).

A prevalence of tan to white arkosic sandstones characterize the Stockton Formation, especially the Prallsville and older members. The mudstones in the same sequences tend to be red. Sandstones in younger parts of the basin section also tend to be red, notably in the vast Passaic Formation. This color difference may reflect the former presence of reducing fluids in the Stockton sandstones. Similar pale colors characterize sandstones of other ENAM rift basins, including the Pekin Formation of the Deep River basin, the Pine Hall Formation of the Dan River basin, the Otterdale Sandstone of the Richmond basin, the Newfound Formation of the Taylorsville basin, the New Oxford Formation of the Gettysburg basin, and the basal New Haven Formation of the Hartford basin (see Fig. I-2 for basin locations).

In the western U.S., particularly in the largely eolian Jurassic Navajo and Entrada sandstones, pale colored (white, tan, and yellow) sandstones have been interpreted as bleached because of reducing fluids, including natural gas, hydrogen sulfide, and oil (Chan et al., 2000; Beitler et al., 2003, Parry et al., 2004). The discordant, clearly diagenetic, color discontinuities are obvious at many outcrops (Fig. 1.3) in the Triassic-Jurassic sandstones of the Colorado Plateau. Diagenetic migration of iron by reducing fluids is a simple explanation for the light color of the Stockton sandstones. A source of hydrocarbons could be the overlying Lockatong Formation (see Stop 2) or a lacustrine sequence equivalent to the Stockton fluvial sequence present down-dip but not exposed (Reynolds, 1994). It is also possible that the sandstones were aquifers though most of their history and never developed the hematitic stains characteristic of younger Newark basin formations.

In the 19th and early 20th centuries, the Stockton Formation was a significant source of building stone, notably using the pale-colored sandstones which are nearly white when fresh. The one active quarry in the Stockton Formation, the nearby Delaware Stone Quarry in Lumberville, PA, still serves this use. Currently, the Stockton Formation is most important economically as an aquifer. Although sandstone porosities can be high (e.g., 22.5%; Sloto et al., 1996) compared to other formations in the rift basin, most groundwater flow is from fractures in the sandstone. Because of the widespread presence of mudstone intervals associated with the sandstones, as seen here, the ratio between horizontal to vertical transmissivities can be large, i.e., 100:1.

![Figure 1.3: Discordant color boundaries in the Entrada Sandstone just east of the NM/AZ border along I-40 (35.369722°, -109.046028°), McKinley County, NM. Photo by P.E. Olsen.](image-url)
Two orthogonal sets of fractures are present in this area (Fig. 1.4) and elsewhere in the Newark basin. Plumose markings on fractures cutting fine sandstones indicate that these fractures are joints that formed perpendicular to the extension direction. One set consists of NE-striking, subvertical joints resulting from NW-SE extension. The other set consists of NW-striking, subvertical joints perpendicular to a local extension direction also responsible for the WNW-striking Solebury dike that presumably belongs to CAMP. Most other dikes in and near the Newark basin are NE-SW striking.

References

<table>
<thead>
<tr>
<th>START</th>
<th>TURN</th>
<th>DIRECTIONS/COMMENTS/NOTES</th>
</tr>
</thead>
<tbody>
<tr>
<td>35.9</td>
<td>R</td>
<td>Turn right out of Prallsville Mills onto Risler Road. NJ 29</td>
</tr>
<tr>
<td>37.2</td>
<td></td>
<td>Cross narrow bridge with "S" Shaped Approaches</td>
</tr>
<tr>
<td>38.7</td>
<td>L</td>
<td>Enter on ramp to NJ/PA 202 South to take bridge to return into PA</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Note Cemetery on right and tight ramp on left with no traffic signal</td>
</tr>
<tr>
<td>39.6</td>
<td></td>
<td>Pass through Toll Gate merging onto PA 202 South entering PA</td>
</tr>
<tr>
<td></td>
<td></td>
<td>New Hope Lambertville Bridge</td>
</tr>
<tr>
<td>41.2</td>
<td></td>
<td>Following Lower York Road/PA 202, stay in Left Lane</td>
</tr>
<tr>
<td>46.3</td>
<td>R</td>
<td>Keep Right to stay on PA 202 South</td>
</tr>
<tr>
<td>52.3</td>
<td>L</td>
<td>Turn left onto Lower State Road/PA 3003</td>
</tr>
<tr>
<td>52.7</td>
<td>L</td>
<td>Turn left to stay on Lower State Road/PA 3003</td>
</tr>
<tr>
<td>54.9</td>
<td>R</td>
<td>Turn right onto Pickertown Road</td>
</tr>
<tr>
<td>55.0</td>
<td>L</td>
<td>Turn left into Eureka Stone Quarry, 800 Lower State Road, Chalfont, Stop #2</td>
</tr>
</tbody>
</table>
HARPER'S GEOLOGICAL DICTIONARY

THRUST FAULT - A misfire in the boosters of an ICBM.
Stop 2: Lockatong Formation at Eureka Quarry

Figure: 2.1: Cross section of the Newark basin along seismic line NB-1 showing the projected position of Stop 2. Modified from Withjack et al. (2013).

Location: Lat 40.258880, Long -75.185419: Eureka Stone Quarry, Eureka, PA.

Key Points:

1. Synrift lacustrine Lockatong Formation (~222 – 218 Ma)
2. Deeply buried (~5 km) by end of rifting; now exhumed by uplift, tilting, and faulting
3. Mostly lacustrine depositional environment
4. Consists of orbitally paced cyclic black and gray shales
5. Accumulated at low latitudes at time of very high pCO2
6. Fish fossils and clam shrimp
7. Oil stains
8. Detachment folding associated with bedding-plane slip
9. NE-striking, steeply dipping faults and joints

Notes:
Stop 2: Lockatong Formation at Eureka Quarry

The Lockatong Formation of Late Triassic age is a large lacustrine lens in the Newark basin and constitutes the most persistently deep-water facies of the Triassic part of the synrift section. This quarry exposes more than 200 m of cyclical black and gray calcareous mudstone of the lower Lockatong Formation including nearly all of the Nursery Member and the upper part of the Princeton Member (see Figure I.8) near the bottom of the formation and close to the center of the basin (Fig. 2.1). It is this part of the Lockatong Formation that has the highest frequency of organic-rich strata.

The Lockatong Formation was long thought to be Late Carnian in age. However, the last two decades have seen a major revision in age based on the combined astrochronology and magnetostratigraphic correlation to the European marine (Tethyan) sections (Muttoni et al., 2004). Consequently, the Lockatong Formation (and the Raven Rock Member of the Stockton Formation) are Norian in age (Kent et al., 2017). The paleolatitude was about N 6° (Kent & Tauxe, 2005), and pCO₂ was very high: between 4000 – 5000 ppm (Schaller et al., 2015).

Van Houten cycles (see Fig. I.9) average about 6 m thick here and tend to be dominated by mudstone. Some are quite organic-rich (~4% TOC), including two prominent Van Houten cycles shown in Figure 2.2. The black shales in these two cycles are microlaminated, and produce abundant fossil fish (Fig. 2.3). Mudcracks are relatively uncommon, although present in every Van Houten cycle; burrowing is more common at this stratigraphic level than higher in the formation.

The section here in the Eureka Quarry was one of the first sections studied for its cyclically, both in terms of identification and counting of the cycles (e.g., Van Houten, 1964) and using Fourier analysis (Olsen, 1986) (Fig. 2.4). The original Fourier analysis used the Blackman-Tukey method, which is relatively low resolution. However, the results are completely consistent with later results based on the cored section (e.g., Olsen & Kent, 1996, 1999; Kent et al., 2017; Olsen et al., 2018) and reanalysis using the multi-taper-method (Fig. 2.4).

Detailed studies of the lateral facies relationships, paleontology, and chemical constituents of these two cycles (Olsen, 1980; Olsen, 1984; Olsen et al, 1989) suggest that the lower cycle accumulated during the rise and fall of a very large lake with dilute water during high stand. The upper cycle accumulated during the rise and fall of a very large lake with more solute (especially carbonate). The change between the two cycles is part of the trend through a ~100,000-year cycle in which the high-stand phases of the lakes are first dilute and large, then more saline but still large, and then finally shallow and smaller and more dilute again. Overall, this recapitulates the changes seen in the lower 400,000-year cycle. This recapitulation of a pattern at one scale to larger scales is characteristic of cyclical lake sequences.

The two cycles shown in Figure 2.2 are especially noteworthy because of their faunal content (Fig. 2.3) and their known lateral extent. The same cycles are recognizable laterally in the Newark Basin Coring Project (NBCP) cores ~30 km to the east (Fig. 2.2). Both cycles have a microlaminated, deep-water interval, and both contain well-preserved fish. The lower cycle (W-6), however, is relatively organic carbon- and carbonate-poor, whereas the upper cycle (W-5) is organic carbon- and carbonate-rich. The fish present (Fig. 2.3) are differ in each cycle with the lower cycle dominated by the gar-relative *Semionotus* and the upper cycle dominated by the distant sturgeon-relative *Turseodus* (Fig. 2.3).
Figure 2.2: Comparison of chemical and lithological data at Stop 2, Eureka Quarry (From Olsen, 1986), with the Nursery no. 1 core and depth rank section. We will be examining these two cycles (W-5 and W-6) in outcrop.
The lower cycle has mostly small clam shrimp, and the upper cycle has mostly large clam shrimp. These differences, maintained at all outcrops, must reflect basin-wide differences in lake chemistry affecting the fauna and organic-carbon preservation.

The microlaminated part of cycle W-5, represents the most extreme end-member of lake depths in these ancient lakes. In large tropical lakes, like those of the Newark basin, water depth is the main control on material distribution. This is because the main sources of energy for vertical and horizontal material transport are wind-driven turbulence and currents transmitted through the surface of the lake. Depth of wave base, one measure of this work, is a function of the distance over which the lake is exposed to wind (fetch) and the speed and duration of the wind (Fig. 2.5). Generally, a lake covering a larger surface area has a deeper wave base than a lake covering a smaller area. For two lakes of equal area, the deeper lake will have a smaller proportion of its water column affected by wave mixing than the shallower one. Assuming that the microlaminated strata at this locality were not exposed to wave base during their deposition, then the longest dimension of the microlaminated unit can be used to calculate a minimum lake depth using the unit’s preserved length as the maximum potential fetch (Manspeizer & Olsen, 1981; Olsen, 1984, 1990). For the Lockatong Formation, this method yields depths of about 70, 100, and 130 m for medium wind speeds of 20, 30, and 40 m/sec, respectively (Olsen, 1990). Similar results are obtained using the model of Rowan et al. (1992) as interpreted by Smoot (2010). The absence of bioturbation in these layers together with the preservation of whole fish and reptiles suggest an anoxic bottom. Therefore, these estimates represent minimum depths to the chemocline, and the lakes could have been much deeper.

For this microlaminated unit, the deep water and resulting turbulent stratification greatly reduced the rate of oxygen transport to depth; consequently, bacterial respiration depleted the oxygen below about 100 m (based on Olsen, 1990). This had the effect of eliminating bioturbators, which increased the effective rate of burial of organic material and dramatically decreased ecosystem efficiency, sequestering organic matter from both metabolic enzymes and essential metabolic requirements. The result is increased preservation of labile organic matter. This is a general theme, applying to lacustrine and marine systems alike.

Figure 2.3: The fish Turseodus from Eureka Quarry. This specimen is the holotype of Gwyneddichtis major Bock, 1959 (Academy of Natural Sciences of Drexel University 15655 Quarry (Bock 1959). Courtesy of Ted Daeschler.
“Dead oil” staining and pyrobitumen-filled fractures are abundant at this site and in the Lockatong Formation in general. Although the present thermal maturity in the semi-anthracite to anthracite grade is 2.58 % R0 (Malinconico, 2002) at this locality, the abundant staining attests to considerable petroleum migration earlier, and to the possibility of remaining gas, the economic value of which is unproven. The economic value of the Lockatong Formation is largely as crushed stone, the hardness of which is caused by the high content of silicate cements, deep burial (~ 5 km: Malinconico, 2002), and high thermal maturity. According to Rddad (2017) this same thermal cracking may have moved arsenic from organic matter into pyrite and bitumen where it can be further mobilized into groundwater, which is an issue in drinking water derived from Lockatong (and Passaic) bedrock aquifers (Serfes et al., 2010).

Melanges similar to those we will see in the core exercise (Stop 4) are present in cycle W-5. Olsen et al. (1989) termed them “dead horses” (see Stop 7). Generally, they are not present in the lower organic content of silty units, even when microlaminated. As discussed in the core exercise, these features have been misinterpreted as turbidites and surface erosional breccias (e.g., in the Eocene Green River Formation: Dyni & Hawkins, 1981), and both of these interpretations led to serious mistakes in the depositional context of source rocks, given that the breccias are actually early diagenetic features involving in situ liquefaction, brecciation, and shear.

Conspicuous in some cycles, especially W-5, is evidence of bedding-plane shear involving both folding and brittle failure with mineralized fault planes abundant at this site and in the Lockatong Formation in general. Although the present thermal maturity in the semi-anthracite to anthracite grade is 2.58 % R0 (Malinconico, 2002) at this locality, the abundant staining attests to considerable petroleum migration earlier, and to the possibility of remaining gas, the economic value of which is unproven. The economic value of the Lockatong Formation is largely as crushed stone, the hardness of which is caused by the high content of silicate cements, deep burial (~ 5 km: Malinconico, 2002), and high thermal maturity.

Figure 2.4: Comparisons of power spectra for Lockatong Formation. (Top) Red line and labels show Eureka Quarry analysis from Olsen (1986) using Blackman-Tukey method, and black/grey line shows analysis from Newark Basin Coring Project (NBCP) cores (Olsen & Kent, 1996) using multi-taper-method (MTM). Note splitting of the ~100 ky cycle in the latter. (Bottom) Red line and labels show new MTM spectrum from original Eureka data. Notice the splitting of the f-test results for the new analysis showing that the Eureka results are representative of the Lockatong in general. For top and bottom, a is 405 ky cycle; b-c split is ~100 ky cycles; d-e-f is ~20 ky cycles. The accumulation rate is greater at the Eureka site than at the cored section, but the ratios between the ~100 kyr and the ~20 ky cycles are nearly the same.
Figure 2.5: Predicting the depths of lake with microlaminated, organic-rich units. A, Calculated relationship between maximum potential fetch of a lake and predicted wave base for winds of various speeds (Olsen, 1990). Gray circles show minimum depth estimates for Lockatong lakes. B, Predicted depth of wave base and actual depth of chemocline for several east African lakes. Abbreviations: A, Lake Albert; B, Lake Bunyuni; C, Lake Chad; E, Lake Edward; K, Lake Kivu; M, Lake Malawi; N, Lake Nhugute; T, Lake Tanganyika; TU, Lake Turkana; V, Lake Victoria. Predicted range for Lockatong microlaminated units shown in gray. Note that for modern lakes in which maximum depths are less than predicted depths of wave mixing, no chemocline exists, and oxygenated waters reach the lake bottoms. Note also that Lake Baikal would plot with Lake Tanganyika (T) in predicted depth of wave mixing, lake depth, and depth to the base of the measured turbulent layer; it presently has no chemocline, and oxygen reaches the bottom. During the Pliocene, however, with a longer growing season and higher productivity it evidently did chemically stratify and produced microlaminated diatomites. Calculated depth of wave mixing is based on A. Modified from Olsen (1990).

References

<table>
<thead>
<tr>
<th>START</th>
<th>TURN</th>
<th>DIRECTIONS/COMMENTS/NOTES</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0</td>
<td></td>
<td>Zero out Odometer after touring Eureka Stone Quarry</td>
</tr>
<tr>
<td>0.1</td>
<td>L</td>
<td>Turn left out of quarry onto Lower State Road</td>
</tr>
<tr>
<td>1.0</td>
<td>L</td>
<td>Turn left onto Bristol Road</td>
</tr>
<tr>
<td>2.1</td>
<td>L</td>
<td>Get in Left Lane at PA 202 Intersection</td>
</tr>
<tr>
<td>3.3</td>
<td>L</td>
<td>Turn left onto West Butler Avenue</td>
</tr>
<tr>
<td>3.9</td>
<td>R</td>
<td>Turn right onto Main Street/PA 152 North</td>
</tr>
<tr>
<td>5.6</td>
<td>R</td>
<td>Turn right onto New Galena Road</td>
</tr>
</tbody>
</table>

6.4 Enter Peace Valley Park for Lunch Stop

7.0	R	Turn into Park Pavillions 3/4
0.0	L	Zero out Odometer before leaving Peace Valley Park
0.3	L	Turn left onto Myers Road
0.8		Continue straight, Myers Road becomes Callowhill Road
2.1	R	Turn right onto Hilltown Pike
2.6	L	Veer left at “Y” to stay on Hilltown Pike
3.1	R	Keep right to turn onto Blooming Glen Road
		Continue straight, Blooming Glen Road becomes Minsi Trail

| 4.0 | R | Turn right into Blooming Glen Quarry, 901 Minsi Trail, Perkasie, Stop #3 |

HARPER’S GEOLOGICAL DICTIONARY

CYCLIC SEDIMENTATION - The process of accumulating sand, silt, and clay eroded from trail surfaces during bike races.
Stop 3: Passaic Formation, Blooming Glen Quarry

Figure: 3.1: Cross section of the Newark basin along seismic line NB-1 showing the projected position of Stop 3. Modified from Withjack et al. (2013).

Location: Lat 40.366371, Long -75.231750; 901 Minsi Trail, Perkasie, PA 18944.

Key Points:

1. Exposures of basal Passaic Formation
2. Deeply buried (~ 5 km) by end of rifting; now exhumed as a result of erosion, tilting, and faulting
3. Mostly lacustrine depositional environment that accumulated at low latitudes during a time of high pCO_2
4. Orbitally paced cyclical red, gray, and black shales that accumulated in part of ~400 kyr cycle with little variability
5. NE-striking, steeply dipping strike-slip faults with normal and reverse separation
6. NE-striking, vertical fractures

Notes:
Stop 3: Passaic Formation, Blooming Glen Quarry

Red, gray, and black mudstones and sandstones of the basal Passaic Formation (Brunswick Group, undefined of Lyttle and Epstein, 1987) of Late Triassic age are exposed at the Haines & Kibblehouse, Blooming Glen quarry near the center of the Newark basin (Fig. 3.1). The age of the strata exposed here is Norian at 217 – 218 Ma, based on astrochronology (Kent et al., 2017). The strata accumulated at about 10°N (Kent and Tauxe, 2005) under pCO2 concentrations of between 4000 and 5000 ppm (Schaller et al., 2015) and show the cyclicity typical of the lower three quarters of the Passaic Formation. The red mudstones accumulated primarily in playas with periodic purple, gray, and black strata reflecting deposition in progressively more permanent and deeper bodies of water. These cyclical strata are part of basal Member C (see Fig. 1.8), which is exposed on the north side of the quarry) (Fig. 3.2). Desiccation cracks, some roots and burrows, and abundant scoop-shaped paleosol slickensides affect the more massive mudstones. Reptile footprints and invertebrate traces occur in the less intensely mudcracked red mudstones. Pinch and swell lamination is prevalent in the black and dark gray shales, indicating deposition above storm wave base. Although some mudstones are dark in color, they have rather low organic-carbon contents (<1%), and they comprise only a small fraction of the section. The organic-carbon content of the remainder of the section is very low, generally close to 0%, even in the gray beds.

The dark colored units high in the quarry wall are traceable for over 75 km laterally into different fault blocks. Correlation with outcrops and the NBCP cores show that even many of the shaley red intervals are traceable laterally over at least 30 km. This kind of lateral continuity is typical of Newark basin lacustrine strata and of lacustrine strata in general. Modern shaded-relief maps show the lateral continuity of bedding form lines produced by differential erosion of the cyclical strata (Fig. I.13 & I.14).

Fourier analysis of this section shows the hierarchy of cycles typical of Milankovitch-type climatic forcing. At this quarry, the mean Van Houten cycle thickness (i.e., the 20,000-year cycle of climatic precession) is 6.4 meters. The thickness of the short-modulating cycle (i.e., the ~100-kyr eccentricity cycle) is about 32 meters, and the thickness of the long-modulating cycle (i.e., the 405-kyr eccentricity cycle) is about 120 meters. This basal part of the Passaic Formation lies in the dry part of a long modulating cycle. Knowing this cyclicity, we can predict that organic-rich black shales will not occur within 40 meters of the ones exposed in the quarry. Those that do occur in the over- and underlying long modulating cycles are probably better developed -- and they are. Although the section exposed in the quarry is predominantly fine grained, beds of fine sandstone exist. Some of these beds have tilted surfaces and an overall geometry suggestive of very small deltas deposited during some of the shallower lake events. The transition from the mostly gray and black strata of Lockatong Formation to the mostly red strata of the Passaic Formation occurs just below the base of the quarry section.

This transition not only involves an upward change in the predominant color from gray to red, but also an upward increase in accumulation rate seen throughout the basin. This change may reflect an increased input of material. Such an increase could be due to the capture of a new drainage system or an increased eolian source. Smoot (2010) argues for the latter and notes that this transition occurs with a change in evaporite mineralogy from sodium salts to calcium sulfates. This evaporite transition could be due to a markedly increased eolian influx from the northeast (i.e., Scotian Shelf, Morocco) by the trade winds,
bringing gypsum and clastic dust from evaporite basins in the subtropics receiving marine brines for the first time during continental breakup.

Figure 3.2: Comparison between section at Stop 3 at the Haines and Kibblehouse Blooming Glen Quarry, outcrops along the Delaware River (Kingwood Station), and the Titusville no. 1 core of the NBCP and a synthetic seismogram derived from the nearby (16 km) Cabot no. 1 well from the correlative part of the section (after Reynolds, 1994).

The lateral continuity discussed above helps produce the continuous, parallel character typical of lacustrine strata observed on seismic-reflection data. Thus, on seismic character alone, this part of the Passaic Formation might be identified as potential source rock like the underlying Lockatong Formation. It is, however, a very poor source rock. Scale is an important consideration when comparing field observations and geophysical data. Compare the section of the quarry to a synthetic seismogram of the same section from the nearby Cabot #1 well (Reynolds, 1994). The entire quarry is barely the scale of a single wavelet (Figure 3.2)!

Two high-angle, NE-striking faults cut the Passaic Formation in the quarry. One fault has normal separation, whereas the other has reverse separation. These faults appear to have formed late in the history of the Newark basin (i.e., after the deep burial of the Passaic Formation). Slickenlines indicate that they have a significant component of strike-displacement.

Groundwater flow occurs mostly in fractures in the fine-grained facies of Passaic Formation, with most flow occurring along bedding-plane partings, with high-angle fractures funneling flow toward the bedding-plane partings. Flow also occurs through
zones of dissolved authigenic sulfates (gypsum and anhydrite) in the deeper subsurface (Michalski, 2010; Serfes et al., 2010). There are few signs of migrated hydrocarbons, but given the large ratio of red to gray and black strata, any hydrocarbons generated by the thin, more-organic rich rocks would be limited. However, the black shales are a potential locus of redox-concentrated metals, notably arsenic and lead (Serfes et al., 2010). The crushed stone produced here is largely used for ornamental purposes.

References

<table>
<thead>
<tr>
<th>START</th>
<th>TURN</th>
<th>DIRECTIONS/COMMENTS/NOTES</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0</td>
<td>R</td>
<td>Zero out Odometer after touring Blooming Glen Quarry</td>
</tr>
<tr>
<td>2.2</td>
<td>L</td>
<td>Turn left onto PA 313 West/Dublin Pike</td>
</tr>
<tr>
<td>7.6</td>
<td>R</td>
<td>Veer right onto East Broad Street/PA 313 West</td>
</tr>
<tr>
<td>7.9</td>
<td>L</td>
<td>Veer left onto East Broad Street/PA 313 West</td>
</tr>
<tr>
<td>9.6</td>
<td>R</td>
<td>Turn right onto PA 309 North</td>
</tr>
<tr>
<td>18.0</td>
<td>R</td>
<td>Turn right onto Center Valley Parkway</td>
</tr>
</tbody>
</table>
| 18.8 | R | **Turn right to return to hotel, Last Stop for the Day**

HARPER'S GEOLOGICAL DICTIONARY

PETTJOHN - A small outhouse used by very short people.

Homewood Suites Hotel is located at 3350 Center Valley Parkway

Total Mileage for Day 1, Friday, 5 October 2018
He was demonstrating some new karate moves he learned recently, and then there was this ominous “click”!
Stop 4: Cores and Seismic-Reflection Lines from Newark Basin

Location: Lat 40.550690, Long -75.420517; Homewood Suites by Hilton Allentown Bethlehem Center Valley, 3350 Center Valley Pkwy, Center Valley, PA 18034

Key Points:

1. Seismic lines reveal subsurface geometry of Newark basin including variable dip of border fault (higher in north, lower in south) and saucer-shaped igneous intrusions
2. Seismic-reflection profiles, but not cores, provide large-scale geometry of synrift strata
3. Sedimentary and igneous fabrics in cores show detailed stratigraphic patterns and facies more clearly than outcrops
4. Representative cores of facies and stratigraphy of units seen at field stops and additional synrift units including Jurassic-age strata and CAMP-related lava flows
5. Lacustrine cyclicity is present in all formations except lower three-quarters of Stockton Formation
6. Sediment accumulation rate in syn-CAMP lacustrine strata is five times that of Lockatong and Passaic formations
7. Thermal maturity in syn-CAMP strata is much less than that at field stops and presently in oil window
8. Extremely unusual Pompton (air-fall) ash in Towaco Formation
9. Dead oil staining in Lockatong Formation and live oil in Feltville Formation
10. Various kinds of bedding-plane slip features including early melanges and brittle detachment faults
11. Various authigenic and vein-filling minerals
12. Datable zircon-bearing gabbroids in basalt

Notes:
Figure 4.1: Geologic map of Newark basin showing locations of seismic lines and cores on display. Cross sections show locations and projected locations of coreholes. The stratigraphy in the top of one core overlaps with the stratigraphy at the bottom of the adjacent borehole. This allows the construction of the composite stratigraphic section in Figure 4.2. Modified from Olsen et al. (1996), Withjack et al. (2013), and Olsen et al. (2016).
Stop 4: Representative Cores of the Newark Basin

Figure 4.2: Stratigraphy of the Newark basin. The lithologic column is a composite section based on seven Newark Basin Coring Project (NBCP) cores (see Fig. 4.1 for locations) and several cores from the Army Corps of Engineers (ACE). For the core-based magnetic-polarity stratigraphy (Kent et al., 2017), black represents normal polarity. Based on global correlations, the Triassic-Jurassic boundary is currently placed in the middle Felthorne Formation. The geologic ages are based on radiometric dates of the lava flows coupled with Milankovitch cyclostratigraphy. Depositional environments are mostly those at the cored locations. Based on Olsen et al. (1996); Whiteside et al. (2007); Kent et al. (2017).
Figure 4.3: Uninterpreted and interpretation of seismic line NB-1 located in area of field trip. Interpretation utilizes drill-hole data and outcrop data. Modified from Withjack et al. (2013). A large version of this line will be on display at Stop 4.

The following discussion of seismic line NB-1 is largely from Withjack et al. (2013). The seismic line, acquired and processed by NORPAC Exploration Services in 1983, trends NW-SE across the central part of the basin (Fig. 4.3). The line shown in Figure 4.3, is time-migrated and displayed with no vertical exaggeration assuming a velocity of 5 km s^{-1}, a reasonable average velocity based on seismic-velocity analyses and sonic-log data from the nearby North Central Oil Corporation Cabot KBI No. 1 well (see location in Fig. 4.1) (Reynolds, 1994). Our interpretation of seismic line NB-1 (Fig. 4.3) honors the seismic data and all available surface geology (e.g., location of formation contacts and major faults) and drill-hole data (e.g., Ratcliffe et al. 1986; Olsen et al. 1996). The seismic line shows that a major SE-dipping fault zone with normal separation bounds the basin on the northwest. The fault zone, characterized by a series of high-amplitude reflections, is relatively planar and dips ~30° to the SE. Using core data (Stop 9), Ratcliffe et al. (1986) demonstrated that this fault zone is a mylonitic Paleozoic thrust fault reactivated during rifting. Similar high-amplitude reflections in the footwall of the basin-bounding fault zone are likely associated
with Paleozoic thrust faults mapped northwest of the Newark basin, some of which were also reactivated during rifting (Fig. 4.1).

We propose that conglomeratic facies produce the narrow no-record zone in the hanging wall of the basin-bounding fault. Field data show that alluvial-fan conglomerates are present in all sedimentary formations in the hanging walls of the basin-bounding faults of the Newark basin, providing evidence of local footwall relief and syn-depositional faulting (see Stops 9 and 10) (e.g., Arguden & Rudolfo, 1986; Schlische, 1992; Smoot, 2010). The seismic data show that the synrift strata dip ~10° to 15° toward the northwest. Near the basin-bounding fault zone, however, the synrift strata are nearly flat-lying. This change in dip is associated with the transverse anticline (the Ferndale dome) whose axial trace is parallel to the seismic line. The seismic data also confirm that a major SE-dipping intrabasin fault with normal separation (the Flemington/Furlong fault) cuts the syn-rift strata in this part of the Newark basin.

The seismic data suggest that the Stockton Formation (exposed at the surface) and an unexposed older unit (which onlaps Paleozoic pre-rift strata) gradually thicken toward the northwest (i.e., toward the basin-bounding fault zone). The change in bedding dip is ~3° from the top to the bottom of the Stockton Formation. If sediment supply rates were sufficiently high to fill the basin (a reasonable assumption for the dominantly fluvial Stockton Formation; Schlische & Olsen, 1990), then this thickening toward the basin-bounding fault indicates that faulting and deposition were coeval (i.e., the Stockton Formation and underlying unit are growth deposits).

Seismic Line Sandia 101 is one of two high-resolution seismic-reflection profiles acquired in late March and early April, 2011 as part of the TriCarb Consortium for Carbon Sequestration Newark Basin characterization project (Slater et al., 2012; Tymchak et al., 2011; Olsen et al., 2011b; Collins et al., 2014). The following discussion of the dip-parallel line is mainly from Olsen et al. (2016). Source points were spaced at 36.5 m (120-ft) intervals and geophone accelerometers collected data at 3.05 m (10 ft) intervals. The seismic profiles were processed by Conrad Geoscience Corp. (Tymchak et al., 2011) to obtain depth-migrated images of the basin’s subsurface geometry (Fig. 4.4). The NYSTA Tandem Lot no. 1 stratigraphic test well, along with the surface data, ground truths the seismic line. The most obvious features on the profile are the pair of strong reflections crossing the basin, making a trough- or scoop-shape (Fig. 4.4). Prior to drilling, these were interpreted as demarcating the Palisade sheet, which proved to be correct. The hole was spudded in middle Passaic Formation. Visible metamorphism and metamorphic minerals (e.g., epidote) were encountered at ~4500 ft. in reddish Passaic Formation. The Palisades sill was encountered at 4992.25 ft and the underlying metamorphosed Lockatong Formation was entered at 6567 ft. The drill hole reached total depth (T.D. = 6881 ft), still in the Lockatong Formation. The border fault is not imaged on the seismic profile, but it projects from the surface to depth to the west of the faint bedding reflections to the west of the Palisade sheet. At depth, strong discordant reflections demarcate basement structures, plausibly Paleozoic thrust sheets incorporating Paleozoic carbonates, as are imaged on other seismic lines across the basin (Fig. 4.3).
Figure 4.4: Seismic line Sandia 101. a. Uninterpreted line. b. Interpreted line constrained by surface geology and the NYSTA Tandem Lot #1 well. c. Geologic cross section based on seismic line. S=Stockton Formation; L=Lockatong Formation; P=Passaic Formation. Note that the Palisade diabase is roughly saucer shaped, consisting of both concordant-to-bedding and discordant-to-bedding parts. Modified from Olsen et al. (2016).

References

New York State Geological Field Conference, Guidebook, Geologic Diversity in the New York Metropolitan Area, pp. 190-274.

